Insurance and Credit: Micro Financial Underpinnings for Entire Economies by Robert Townsend
A Discussion

Orazio P. Attanasio
University College, London and Institute for Fiscal Studies
o.attanasio@ucl.ac.uk

Nobel Symposium on Growth and Development IIES, Stockholm, Sweden

September 3, 2012
1 Introduction and Background

2 Risk Sharing
 - Tests of perfect risk sharing
 - Findings on insurance
 - The Townsend research agenda: GE and full characterisation
 - What imperfections?

3 Credit

4 Other imperfections

5 Conclusions
Introduction

This is an impressive presentation about an impressive and ambitious research agenda.
This is an impressive presentation about an impressive and ambitious research agenda.

'Veillage' economies represented as 'PET' economies.
- Micro-founded;
- Intermediation and General equilibrium;
Introduction

- This is an impressive presentation about an impressive and ambitious research agenda.
- 'Village' economies represented as 'PET' economies.
 - Micro-founded;
 - Intermediation and General equilibrium;
- Rigorous theoretical models brought to data.
Introduction

This is an impressive presentation about an impressive and ambitious research agenda.

'Village' economies represented as 'PET' economies.
- Micro-founded;
- Intermediation and General equilibrium;

Rigorous theoretical models brought to data.

Ambition to use this framework for positive and normative purposes.
The emphasis in the presentation is on the GE nature of the approach.
The emphasis in the presentation is on the GE nature of the approach.

The model is fully specified and possibly estimated.
Introduction

- The emphasis in the presentation is on the GE nature of the approach.
- The model is fully specified and possibly estimated.
- Interestingly this contrasts with the approach taken in some of the early papers by Townsend.
Introduction

- The emphasis in the presentation is on the GE nature of the approach.
- The model is fully specified and possibly estimated.
- Interestingly this contrasts with the approach taken in some of the early papers by Townsend.
- Both approaches have advantages and disadvantages.
 - robustness v ability to use results for policy.
One of the first papers in this research agenda is the remarkable Townsend ECA piece.
One of the first papers in this research agenda is the remarkable Townsend ECA piece.

It characterises the implications of perfect risk sharing by simply considering *allocations*.

It can afford to be completely agnostic about the way such an allocation is decentralised.
Risk sharing in village economies: Townsend 1994

- One of the first papers in this research agenda is the remarkable Townsend ECA piece.
- It characterises the implications of perfect risk sharing by simply considering *allocations*.
- It can afford to be completely agnostic about the way such an allocation is decentralised.
- Empirically this implies that one does not need to observe the instruments (assets, transfers, informal insurance agreements) through which households absorb idiosyncratic shocks.
One of the first papers in this research agenda is the remarkable Townsend ECA piece.

It characterises the implications of perfect risk sharing by simply considering allocations.

It can afford to be completely agnostic about the way such an allocation is decentralised.

Empirically this implies that one does not need to observe the instruments (assets, transfers, informal insurance agreements) through which households absorb idiosyncratic shocks.

This is great as such information is very hard to get.
One of the first papers in this research agenda is the remarkable Townsend ECA piece.

It characterises the implications of perfect risk sharing by simply considering *allocations*.

It can afford to be completely agnostic about the way such an allocation is decentralised.

Empirically this implies that one does not need to observe the instruments (assets, transfers, informal insurance agreements) through which households absorb idiosyncratic shocks.

This is great as such information is very hard to get.

... however we need a number of other assumptions/data requirements.
The Townsend perfect insurance test

- The logic is very simple and intuitive.
 "...it was never easy....on Gaze Island, but they had the cows and a bit of hay, and the berries, the fish and the potato patches, and they’d get their flour and bacon in the fall from the merchant over at Killick-Claw, and if it was hard times, they shared, they helped their neighbor. No they didn’t have any money, the sea was dangerous and men were lost, but it was a satisfying life in a way people today do not understand. There was a joinery of lives all worked together, smooth in places, or lumpy, but joined.” (A. Proulx, Shipping News pp. 168-9).
The Wilson/Townsend characterisation of perfect insurance

- First order conditions from a planner problem:

\[\lambda^i U'(c_t^i(s^t))\beta^t = \mu_t(s^t), \quad \forall i, s^t \]
The Wilson/Townsend characterisation of perfect insurance

First order conditions from a planner problem:

\[\lambda^i U'(c^i_t(s^t)) \beta^t = \mu_t(s^t), \quad \forall i, s^t \]

\[\frac{U'(c^i_t)}{U'(c^j_t)} = \frac{\lambda^j}{\lambda^i} \]
The Wilson/ Townsend characterisation of perfect insurance

First order conditions from a planner problem:

\[\lambda^i U'(c^i_t(s^t)) \beta^t = \mu_t(s^t), \quad \forall i, s^t \]

\[\frac{U'(c^i_t)}{U'(c^i_t)} = \frac{\lambda^j}{\lambda^i} \]

\[\frac{U'(c^i_t)}{U'(c^i_{t-1})} = \frac{\mu_t}{\mu_{t-1}} \]
The Townsend perfect insurance test

- First order conditions from a planner problem:

\[\log(U'(c_t^i(s^t))) = \log(\mu_t(s^t)) + \log(\beta^t) - \log(\lambda^i) \quad \forall i, s^t \]
The Townsend perfect insurance test

- First order conditions from a planner problem:

\[\log(U'(c^i_t(s^t))) = \log(\mu_t(s^t)) + \log(\beta^t) - \log(\lambda^i) \quad \forall i, s^t \]

\[\text{Var}_g[\log(U'(c^i_t(s^t)))] = \text{Var}_g[\log(\lambda^i)] \quad \forall g, s^t \]
The Townsend perfect insurance test

First order conditions from a planner problem:

\[\log(U'(c^i_t(s^t))) = \log(\mu_t(s^t)) + \log(\beta^t) - \log(\lambda^i) \quad \forall i, s^t \]

\[\text{Var}_g[\log(U'(c^i_t(s^t)))] = \text{Var}_g[\log(\lambda^i)] \quad \forall g, s^t \]

\[\Delta \text{Var}_g[\log(U'(c^i_t(s^t)))] = \alpha \Delta \text{Var}_g[\log(y^i_t(s^t))] \quad \forall g, s^t \]

\(\alpha \) should be zero.
What is needed

- Risk sharing group.
 - The village?
 - Extended families within villages?
 - Caste? (Rosenzweig and Munshi)
What is needed

- Risk sharing group.
 - The village?
 - Extended families within villages?
 - Caste? (Rosenzweig and Munshi)

- Preference specification:
 - Functional form;
 - Homogeneous preferences? (Mazzocco and Saini)
Risk Sharing
Tests of perfect risk sharing

What is needed

- Risk sharing group.
 - The village?
 - Extended families within villages?
 - Caste? (Rosenzweig and Munshi)

- Preference specification:
 - Functional form;
 - Homogeneous preferences? (Mazzocco and Saini)

- What shock to consider (and what arguments to preferences)
 - Vera-Hernandez et al. (2012)
 - Health shocks, consumption and nutritional status
Findings on insurance

- My interpretation of the literature is that perfect insurance is soundly rejected by the data.
My interpretation of the literature is that perfect insurance is soundly rejected by the data.

Individual consumption is, to an extent, protected from some shocks, but not completely.
My interpretation of the literature is that perfect insurance is soundly rejected by the data.

Individual consumption is, to an extent, protected from some shocks, but not completely.

Partial insurance therefore must be a priority on the research agenda.
Findings on insurance

- My interpretation of the literature is that perfect insurance is soundly rejected by the data.
- Individual consumption is, to an extent, protected from some shocks, but not completely.
- Partial insurance therefore must be a priority on the research agenda.
- What type of imperfections are relevant?
 - Imperfect information
 - Imperfect enforceability of contracts.
Findings on insurance

- My interpretation of the literature is that perfect insurance is soundly rejected by the data.
- Individual consumption is, to an extent, protected from some shocks, but not completely.
- Partial insurance therefore must be a priority on the research agenda.
- What type of imperfections are relevant?
 - Imperfect information
 - Imperfect enforceability of contracts.
- How to characterise constrained efficient allocations?
The approach taken by Townsend is to fully characterise the economy and its equilibrium.
The approach taken by Townsend is to fully characterise the economy and its equilibrium.

This is very ambitious, especially when one deviates from first best allocations and complete markets.
The approach taken by Townsend is to fully characterise the economy and its equilibrium.

This is very ambitious, especially when one deviates from first best allocations and complete markets.

The data requirements are tremendous:
- This motivates Townsend’s data efforts.
- Households as firms
- Households detailed accounts.
The research agenda: GE and full characterisation

- The approach taken by Townsend is to fully characterise the economy and its equilibrium.
- This is very ambitious, especially when one deviates from first best allocations and complete markets.
- The data requirements are tremendous:
 - This motivates Townsend’s data efforts.
 - Households as firms
 - Households detailed accounts.
- Whether a full characterisation is feasible is still unclear.
Regardless of whether one thinks the specification of the full GE model is feasible, the first step must be the identification of the relevant imperfections.
What imperfections?

- Regardless of whether one thinks the specification of the full GE model is feasible, the first step must be the identification of the relevant imperfections.
- For this purpose a strategy replicating the original Townsend approach (which relies only on the properties of allocations might be useful.)
Regardless of whether one thinks the specification of the full GE model is feasible, the first step must be the identification of the relevant imperfections.

For this purpose, a strategy replicating the original Townsend approach (which relies only on the properties of allocations) might be useful.

Examples:
- Asymmetric information (Attanasio and Pavoni, 2011)
- Imperfect enforceability (Attanasio, 2012)
Risk sharing with moral hazard and hidden assets

- Attanasio and Pavoni (2011) consider a model where full risk sharing is not achieved because moral hazard and hidden assets.
Risk sharing with moral hazard and hidden assets

- Attanasio and Pavoni (2011) consider a model where full risk sharing is not achieved because moral hazard and hidden assets.
- The model can explain what Deaton and Campbell (1989) denote 'excess smoothness'.
Risk sharing with moral hazard and hidden assets

- Attanasio and Pavoni (2011) consider a model where full risk sharing is not achieved because moral hazard and hidden assets.
- The model can explain what Deaton and Campbell (1989) denote 'excess smoothness'.
- The model predicts a violation of the 'simple' budget constraint.
Risk sharing with moral hazard and hidden assets

- Attanasio and Pavoni (2011) consider a model where full risk sharing is not achieved because moral hazard and hidden assets.
- The model can explain what Deaton and Campbell (1989) denote 'excess smoothness'.
- The model predicts a violation of the 'simple' budget constraint.
- Use (among others) the equation:

\[
\Delta \text{Var}_g[\log(U'(c_t^i(s_t)))] = \alpha \Delta \text{Var}_g \log(y^i_t)
\]

\(\alpha\) can be related to the severity of the moral hazard problem.
Imperfect enforceability of contracts

Imperfect enforceability of contracts

- Attanasio (2012) relates the amount of risk sharing observed in different villages properties of the income process in those villages.
 - Income processes estimated through subjective probabilities.
 - Amount of risk sharing measured by evolution of the cross sectional distribution of consumption.
Similar considerations apply to credit imperfections.
Similar considerations apply to credit imperfections. Townsend stresses the presence of large imperfections:
- Differentials in rates of return.
- Slow adoption of HYV
Similar considerations apply to credit imperfections.

Townsend stresses the presence of large imperfections:
- Differentials in rates of return.
- Slow adoption of HYV

Impacts of interventions:
- microfinance
- Million Bhat fund
Similar considerations apply to credit imperfections. Townsend stresses the presence of large imperfections:
- Differentials in rates of return.
- Slow adoption of HYV

Impacts of interventions:
- microfinance
- Million Bhat fund
What imperfections?

- We probably need to model more explicitly the type of market imperfections behind observed results.
What imperfections?

- We probably need to model more explicitly the type of market imperfections behind observed results.
- Townsend has looked at the implications of different types of frictions on repayment in joint liability
 - Moral hazard.
 - Adverse selection
 - Strategic defaults
What imperfections?

- We probably need to model more explicitly the type of market imperfections behind observed results.
- Townsend has looked at the implications of different types of frictions on repayment in joint liability
 - Moral hazard.
 - Adverse selection
 - Strategic defaults
- Other markets imperfections (Udry, 2012)
 - Land markets
 - Labour markets
What imperfections?

- We probably need to model more explicitly the type of market imperfections behind observed results.
- Townsend has looked at the implications of different types of frictions on repayment in joint liability
 - Moral hazard.
 - Adverse selection
 - Strategic defaults
- Other markets imperfections (Udry, 2012)
 - Land markets
 - Labour markets
- What about implications of the impacts of specific interventions?
Poor households might lack information on technology and rates of return.
Other imperfections

- Poor households might lack information on technology and rates of return.
- Outcomes will then depend:
 - Information and knowledge
 - Beliefs
 - Attitudes

Examples:
- Rates of return on education
- Rates of return on different types of productive investment
- Knowledge of human capital accumulation technology
Other imperfections

- Poor households might lack information on technology and rates of return.
- Outcomes will then depend:
 - Information and knowledge
 - Beliefs
 - Attitudes
- Examples:
 - Rates of return on education
 - Rates of return on different types of productive investment
 - Knowledge of human capital accumulation technology
A serious research approach to these imperfections need substantially new data.
A serious research approach to these imperfections need substantially new data.

Large payoffs from innovations in measurement:

- Subjective expectations
- Beliefs
- Attitudes
- Asymmetric information
A serious research approach to these imperfections need substantially new data.

Large payoffs from innovations in measurement:
- Subjective expectations
- Beliefs
- Attitudes
- Asymmetric information

Examples:
- Subjective expectations on returns to education (Mexico)
- Subjective expectations on returns to investment (Anantapur, India)
- Asymmetric information in micro finance groups (Mongolia, Anantapur, India)
- Information on knowledge (Colombia)
Conclusions

- Ambitious agenda
Conclusions

- Ambitious agenda
- GE approach
- Linked to measurement and data.
Conclusions

- Ambitious agenda
- GE approach
- Linked to measurement and data.
- Might be complemented by 'partial equilibrium' studies
- Identification of components of the model.
Future agenda

- Modeling explicitly imperfections
Future agenda

- Modeling explicitly imperfections
- Networks and network formations
Future agenda

- Modeling explicitly imperfections
- Networks and network formations
- Estimating models with distorted information
Future agenda

- Modeling explicitly imperfections
- Networks and network formations
- Estimating models with distorted information
- Measurement.