Inflation and the Price of Real Assets

Monika Piazzesi
Stanford & NBER

Martin Schneider
Stanford & NBER

CFSP Workshop April 2012
Motivation

- Household wealth and its components in the 1970s.

1. Wealth/GDP dipped by 25%.

![Graph showing Net Worth/GDP over time. The graph shows a significant dip in 1970 followed by a recovery.](image-url)
Motivation

• Household wealth and its components in the 1970s.

1. Wealth/GDP dipped by 25%.
 2a. Portfolio shift out of equity into housing.
Motivation

- Household wealth and its components in the 1970s.

1. Wealth/GDP dipped by 25%.

2b. Price dividend ratios comove negatively.
This paper

• Challenge for asset pricing: low frequency volatility & "unique" events
 Examples: Inflation, demographics, credit market developments

• Model of asset prices and household behavior
 – focus on historical trading period.
 – asset demand derived from household sector portfolio choice, given
 1. asset endowments & income (from micro data).
 2. expectations of future prices & income (from historical data, surveys).
 – new asset supply by other sectors to households (from Flow of Funds).
 – prices clear markets to establish temporary equilibrium.

• Main Results
 – Both demographics and surprise inflation lower savings rate ⇒ wealth dip.
 – Inflation makes houses more attractive than stocks ⇒ portfolio shift.
 – Disagreement about inflation ⇒ portfolio shift, increase in credit.
Literature

- **Asset Prices in the 1970s**
 - Demographics: Mankiw-Weil, Abel, Geanakoplos-Magill-Quinzii.

- **Heterogeneous agents & asset prices**
 - incomplete markets: Constantinides-Duffie, Heaton-Lucas, Krusell-Smith.

- **Housing & lifecycle behavior**

- **Temporary equilibrium**: Grandmont.
Outline

1. Model
2. Measurement of model inputs
3. Cross section of household portfolios.
5. Inflation and the portfolio shift.
Model

- **Single trading period** t

- **Asset demand:**
 - households solve savings & portfolio choice problems, given
 1. period t prices (endogenous)
 2. expectations of future prices (exogenous).
 3. asset endowments (exogenous, but value endogenous!).
 - aggregation over households who differ by age, endowments, possibly beliefs.

- **Asset supply**
 - exogenous
 - new supply measured as net household sector purchases.

- **Equilibrium prices**
 - clear markets in period t.
Model

- **Goods:**
 - housing services s, “other consumption” c.
 - frictionless markets for both goods.

- **Assets**
 - equity = trees that pay off c.
 - housing = trees that pay off s.
 - bonds = one-period nominal promises; random payoff $1/\pi_{t+1}$.
 - frictions:
 - no short sales of equity, houses.
 - borrowing limit \propto value of house.
 - spread between borrowing and lending rate.

- **Housing vs. Equity**
 - payoffs; housing is collateral; housing has tax advantage.
Household Problem

- **Preferences:** Epstein-Zin utility over streams \(\{C_\tau\} \) of bundles \(C_\tau = c_\tau^\delta s_\tau^{1-\delta} \).

- **Endowments:** labor income \(y_t \), long-lived assets \(\bar{\theta}_t^h, \bar{\theta}_t^e \), and nominal assets \(\bar{b}_t \).

\[\Rightarrow \text{initial wealth } \bar{w}_t = (p_t^h + d_t^h) \bar{\theta}_t^h + (p_t^e + d_t^e) \bar{\theta}_t^e + \bar{b}_t + y_t. \]

- **Budget constraint**

 In trading period \(t \):

 \[
 \underbrace{c_t + p_t^s s_t}_{\text{consumption}} + \underbrace{p_t^h \theta_t^h + p_t^e \theta_t^e + q_t b_t}_{\text{terminal wealth (savings)}} = \text{initial wealth } \bar{w}_t.
 \]

 For \(\tau > t \)

 \[
 \bar{w}_{\tau+1} = \alpha_{\tau}^\top R_{\tau+1} (\bar{w}_\tau - c_\tau - p_\tau^s s_\tau) + y_{\tau+1}
 \]

- **Short sale constraints & collateral constraint.**

- **Expectations about income, returns, inflation; bond return \(= 1/q_t \pi_{t+1}. \)**
Asset demand and supply

- Asset demand derived from household optimization.
 - sum over households who differ by age, endowments, possibly beliefs.

- Asset supply
 1. Household endowments
 \[\left\{ \overline{\theta}_t^h (i), \overline{\theta}_t^e (i), \overline{b} (i) \right\}; \quad \sum_i \overline{\theta}_t^h (i) = \sum_i \overline{\theta}_t^e (i) = 1. \]
 2. Rest of the Economy (\(=\) government, corporate & foreign sectors)
 - sells new assets to households (accommodates nonzero savings)
 “house” trees \(f_t^h \), “equity” trees \(f_t^e \), bond supply \(D_t \).
 - redeems outstanding bonds
 \[\sum_i \overline{b} (i) = \overline{B}. \]
 - consumes proceeds:
 \[C_t^{ROE} = p_t^h f_t^h + p_t^e f_t^e + D_t - \overline{B}_t. \]
Equilibrium

• Definition

Prices for period \(t \), \((p_t^h, p_t^e, q_t, p_t^s) \), collection of household choices such that
 - consumers optimize, given prices and expectations.
 - goods markets clear.
 - asset markets clear:

\[
\sum_i \theta_t^h (i) = 1 + f_t^h, \quad \sum_i \theta_t^e (i) = 1 + f_t^e, \quad q_t \sum_i b_t (i) = D_t
\]

• Properties

 - Trade with ROE sector accommodates nonzero personal savings.
 - Exogenous expectations.
 - “baseline beliefs” based on empirical moments.
 - inflation expectations in 1970s: Michigan survey; controlled experiments.
Outline

1. Model

2. Measurement of model inputs

3. Cross section of household portfolios.

5. Inflation and the portfolio shift.
Model Inputs: Data & Definitions

• Implement for three 6-year periods

• Data
 – household positions: Survey of Consumer Finances.

• Definitions
 – equity: all corporate (publicly traded + closely held).
 – real estate: owner-occupied + other residential, held directly or thru business.
 – bonds: all dollar-denominated instruments.
 – indirect holdings: included if controlled by household.
 – non-asset income: included if disposable.
Model Inputs & Calibration

1. New Asset Supply
 - household sector net purchases from FFA.
Model Inputs & Calibration

1. New Asset Supply
 - household sector net purchases from FFA.

2. Distribution of Asset Endowments & Income
 - constructed using SCF positions 6 years earlier.
2. Distribution of Asset Endowments & Income

- approximate distribution by finite number of cells.

- equity & real estate:

 market shares from SCF six years prior to benchmark year.

- bonds: prior SCF holdings \times interest factor / realized inflation.

- income $y_T^i = G_T A_T P_T^i u_T^i$

 $A_T = \text{age profile, deterministic}$

 $P_T^i = \text{permanent idiosyncratic component}$

 random walk driven by iid lognormal

 $u_T^i = \text{transitory idiosyncratic component}$

 iid lognormal

prior SCF income, simulate forward
Model Inputs & Calibration

1. New Asset Supply
 - household sector net purchases from FFA.

2. Distribution of Asset Endowments & Income
 - constructed using SCF positions 6 years earlier.

3. Expectations & preferences
 - stochastic processes for income and returns
 - preference parameters
 - credit market parameters
3. Expectations & Preferences

- aggregate growth G_T iid lognormal

- income $y^i_T = G_T A_T P^i_T u^i_T$

 with P^i_T, u^i_T lognormal idiosyncratic shocks

- returns $R_T = \begin{bmatrix} R^b_T, R^h_T, R^s_T \end{bmatrix}$ and inflation π_T iid lognormal

- real returns on individual house $R_{h,i}^h = R_T^h \varepsilon^i_T$

 with ε^i_T iid lognormal idiosyncratic shock

- volatilities and correlations for aggregate shocks from historical aggregate data

 volatilities for idiosyncratic shocks from literature
3. Expectations & Preferences

- CRRA 5, IES $\frac{1}{2}$

 perceived volatility on risky assets is $1.5 \times$ measured

- discount factor $\beta = .975$ to match 1995 wealth/GDP ratio

- capital gains tax on stocks 20%, on housing 0%

- 2% spread between borrowing & lending rate

<table>
<thead>
<tr>
<th></th>
<th>NW/GDP</th>
<th>portfolio weights</th>
<th>credit/GDP</th>
<th>nominal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bonds</td>
<td>housing</td>
<td>stocks</td>
</tr>
<tr>
<td>1995</td>
<td>2.51</td>
<td>15</td>
<td>59</td>
<td>26</td>
</tr>
<tr>
<td>model</td>
<td>2.51</td>
<td>15</td>
<td>60</td>
<td>25</td>
</tr>
</tbody>
</table>
Outline

1. Model

2. Measurement of model inputs

3. Cross section of household portfolios (1995; baseline beliefs).

5. Inflation and the portfolio shift.
Asset Demand

Key state variable

\[\frac{\bar{w}}{\hat{y}} = \text{initial wealth} \quad \text{permanent component of income} \]

1. Savings decision: smoothe consumption.
 - lower saving rate if lower \(\bar{w}/\hat{y} \):
 - by collateral constraint, savings must be nonnegative.

\[\Rightarrow \] younger, poorer households save less; middle-aged households save most.

2. Portfolio decision: maximize return on wealth.
 - higher leverage if lower \(\bar{w}/y \) (human wealth works like riskless asset!).
 - by collateral constraint, borrowing requires buying real estate.

\[\Rightarrow \] younger, poorer households borrow more, buy houses.
Asset Holdings by Age

Terminal Wealth (% gdp)

Equity: Market Shares by Age, Wealth

Net Nominal Positions (% gdp)

Houses: Market Shares by Age, Wealth
Cross Section of Household Portfolios: Summary

• Stylized facts

1. Savings decision
 - hump shapes in savings by age
 - rich households save more

2. Portfolio decision
 - hump-shaped market shares of stocks, houses.
 - young households are net borrowers, old are net lenders.
 - rich households borrow less.

• Model generates facts because low \bar{w}/\bar{y} means low savings, high leverage.

• Asset pricing implications

1. savings decision drives Wealth/GDP ratio.

2. portfolio decision drives individual asset prices.
Outline

1. Model

2. Measurement of model inputs

4. Evolution of the Wealth/GDP ratio (baseline beliefs).

5. Inflation and the portfolio shift.
Evolution of the Wealth/GDP Ratio

- At baseline expectations, model predicts wealth dip in 1970s.
Evolution of the Wealth/GDP Ratio

- At baseline expectations, model predicts wealth dip in 1970s.
• Entry of baby boomers into asset markets lowers average savings rate, asset demand.

Net Worth/GDP

Demographics

• Entry of baby boomers into asset markets lowers average savings rate, asset demand.
• Surprise inflation lowers aggregate household wealth, asset demand.
Evolution of the Wealth/GDP Ratio

- Entry of baby boomers into asset markets lowers average savings rate, asset demand.
- Surprise inflation lowers aggregate household wealth, asset demand.
- Reduction of government debt lowers asset supply.
Outline

1. Model

2. Measurement of model inputs

5. Inflation and the portfolio shift.
Portfolios under Baseline Expectations, 1978

- Portfolio weights are the same as in 1995; credit lower due to higher spread.

<table>
<thead>
<tr>
<th></th>
<th>NW/GDP</th>
<th>portfolio weights</th>
<th>credit/GDP (%)</th>
<th>nominal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>housing</td>
<td>stocks</td>
<td>bonds</td>
</tr>
<tr>
<td>1978</td>
<td>2.08</td>
<td>68</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>baseline</td>
<td>2.11</td>
<td>59</td>
<td>25</td>
<td>16</td>
</tr>
</tbody>
</table>

- Inflation Expectations Experiments.
 - Expected inflation from surveys
 - Inflation uncertainty
 - Inflation as a predictor of low stock returns.
Survey Inflation Expectations

• Data
 – Michigan Survey of Consumers
 – in late 1970s, old expected lower inflation than young
 – difference by age goes away in 1990s.
 – in the model experiment: assign cohort medians.

• Portfolio shift towards housing

 1. Disagreement & Collateral Constraint
 – young trade at same nominal rate as old, perceive lower real rate.
 – young want to borrow cheaply, demand houses (collateral)

 2. Taxation of nominal returns
 – nominal gains on equity, nominal interest taxed more than gains on housing.
Survey Inflation Expectations

- Portfolio shift from stocks to housing.
- Increase in credit volume, nominal interest rate.

<table>
<thead>
<tr>
<th></th>
<th>NW/GDP</th>
<th>portfolio weights</th>
<th>credit/GDP (%)</th>
<th>nominal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>housing stocks bonds</td>
<td>+ -</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>2.08</td>
<td>68 16 16</td>
<td>56 23</td>
<td>8.4</td>
</tr>
<tr>
<td>baseline</td>
<td>2.11</td>
<td>59 25 16</td>
<td>53 20</td>
<td>6.2</td>
</tr>
<tr>
<td>overall median</td>
<td>2.08</td>
<td>61 23 16</td>
<td>53 20</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Survey Inflation Expectations

- Portfolio shift from stocks to housing.
- Increase in credit volume, nominal interest rate.

<table>
<thead>
<tr>
<th>Year</th>
<th>NW/GDP</th>
<th>Portfolio weights</th>
<th>credit/GDP (%)</th>
<th>nominal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>housing stocks bonds</td>
<td>+ -</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>2.08</td>
<td>68 16 16</td>
<td>56 23</td>
<td>8.4</td>
</tr>
<tr>
<td>baseline</td>
<td>2.11</td>
<td>59 25 16</td>
<td>53 20</td>
<td>6.2</td>
</tr>
<tr>
<td>overall median</td>
<td>2.08</td>
<td>61 23 16</td>
<td>53 20</td>
<td>9.0</td>
</tr>
<tr>
<td>cohort medians</td>
<td>2.09</td>
<td>63 21 16</td>
<td>68 35</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Inflation Uncertainty

- Motivation: first peacetime inflation
- Experiment: double volatility of inflation.
- Effects: higher nominal interest rate, less borrowing and lending among households.

<table>
<thead>
<tr>
<th></th>
<th>NW/GDP</th>
<th>housing</th>
<th>stocks</th>
<th>bonds</th>
<th>credit/GDP (%)</th>
<th>nominal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>2.08</td>
<td>68</td>
<td>16</td>
<td>16</td>
<td>56</td>
<td>8.4</td>
</tr>
<tr>
<td>baseline</td>
<td>2.11</td>
<td>59</td>
<td>25</td>
<td>16</td>
<td>53</td>
<td>6.2</td>
</tr>
<tr>
<td>infl. uncertainty</td>
<td>2.11</td>
<td>59</td>
<td>25</td>
<td>16</td>
<td>51</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Inflation as a Predictor of Low Stock Returns

- Motivation: inflation & pessimism about profits.
- Experiment: expected real stock returns –1.5% (consistent with Fama-Schwert 1977).
- Effects: portfolio shift, small drops in wealth/GDP, interest rate.

<table>
<thead>
<tr>
<th>NW/GDP</th>
<th>portfolio weights</th>
<th>credit/GDP (%)</th>
<th>nominal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>housing</td>
<td>stocks</td>
<td>bonds</td>
</tr>
<tr>
<td>1978</td>
<td>2.08</td>
<td>68</td>
<td>16</td>
</tr>
<tr>
<td>baseline</td>
<td>2.11</td>
<td>59</td>
<td>25</td>
</tr>
<tr>
<td>low stock retns</td>
<td>2.05</td>
<td>64</td>
<td>20</td>
</tr>
</tbody>
</table>
Low growth expectations

- **Motivation:** productivity slowdown
- **Experiment:** expected non-asset income growth, stock, house returns -1%.
- **Effects:** lowers interest rate, raises wealth/GDP.

<table>
<thead>
<tr>
<th></th>
<th>NW/GDP</th>
<th>housing</th>
<th>stocks</th>
<th>bonds</th>
<th>credit/GDP (%)</th>
<th>nominal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>2.08</td>
<td>68</td>
<td>16</td>
<td>16</td>
<td>56</td>
<td>23</td>
</tr>
<tr>
<td>baseline</td>
<td>2.11</td>
<td>59</td>
<td>25</td>
<td>16</td>
<td>53</td>
<td>20</td>
</tr>
<tr>
<td>low stock retns</td>
<td>2.05</td>
<td>64</td>
<td>20</td>
<td>16</td>
<td>53</td>
<td>19</td>
</tr>
<tr>
<td>growth $-1%$</td>
<td>2.25</td>
<td>59</td>
<td>26</td>
<td>15</td>
<td>56</td>
<td>23</td>
</tr>
</tbody>
</table>
Combining survey inflation expectations, inflation uncertainty (vol × 4), low expected growth (-.9%) & low expected stock returns (-1.7%)

<table>
<thead>
<tr>
<th></th>
<th>NW/GDP</th>
<th>portfolio weights</th>
<th>credit/GDP (%)</th>
<th>nominal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>housing</td>
<td>stocks</td>
<td>bonds</td>
</tr>
<tr>
<td>1978</td>
<td>2.08</td>
<td>68</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>baseline</td>
<td>2.11</td>
<td>59</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>combination</td>
<td>2.13</td>
<td>68</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
Conclusion

- Asset pricing in 1970s
 - Demographics, surprise inflation, bond supply matter for wealth/GDP.
 - Inflation expectations matter for negative commovement of stock, house prices.
 Three effects:
 1. Disagreement about inflation (young expect more inflation than the old)
 2. Inflation uncertainty
 3. Inflation as a predictor of low stock returns
 - Growth expectations matter for interest rate.

Modelling approach.
- micro data on portfolios discipline heterogeneous agent modelling
- changes in supply ensure compatibility with actions of other sectors.
- temporary equilibrium allows use of surveys, controlled experiments with expectations.