Discussion of Claessens, Ueda, and Yafeh’s

Financial Frictions, Investment and Institutions

Joe Kaboski
University of Notre Dame
October 23, 2010
Paper Summary

- **Their Motivation:** Financial frictions affecting investment have bad consequences for economic fluctuations and growth
Paper Summary

• **Their Motivation:** Financial frictions affecting investment have bad consequences for economic fluctuations and growth

• **Their Question:** What types of policies reduce financial frictions?
Paper Summary

• **Their Motivation:** Financial frictions affecting investment have bad consequences for economic fluctuations and growth

• **Their Question:** What types of policies reduce financial frictions?

• **Their Approach:** Examine q-dynamics in large cross-country firm-level panel dataset
Paper Summary

• **Their Motivation:** Financial frictions affecting investment have bad consequences for economic fluctuations and growth

• **Their Question:** What types of policies reduce financial frictions?

• **Their Approach:** Examine q-dynamics in large cross-country firm-level panel dataset

• **Their Findings:** Shareholders’ rights policies reduce financial frictions affecting investment, especially for smaller firms
Agenda

Question and motivations are clear. I’ll discuss methodology:

1. Data
2. Model
3. Empirics
Data

• Good data set:
 – 48 countries including some poor countries (S. Africa, India, Sri Lanka, Malaysia, etc.)
 – Detailed financial and real variables
 – 1,000,000 firm-year observations

• Limitations:
 – Only publicly-traded
 • Less likely to be constrained
 – Results on shareholder rights vs. creditor rights driven by sample?
 – Is selection (e.g., extensive margin on IPOs) important in explaining cross-country variation?
Data

• Good data set:
 – 48 countries including some poor countries (S. Africa, India, Sri Lanka, Malaysia, etc.)
 – Detailed financial and real variables
 – 1,000,000 firm-year observations

• Limitations:
 – Only publicly-traded
 • Less likely to be constrained
 • Results on shareholder rights vs. creditor rights driven by sample?
 • Is selection (e.g., extensive margin on IPOs) important in explaining cross-country variation?
Model

Model has three purposes:

1. Justify use of average q (avg=marginal)
2. Motivate regression equation
3. Assist interpretation of regression results
Model

Model has three purposes:
1. Justify use of average q (avg=marginal)
 - How important is intangible capital?
2. Motivate regression equation
3. Assist interpretation of regression results
Model

• Abel and Eberly (1994) in discrete time with financial frictions:

\[rV(K, \epsilon) = \max \pi(K, \epsilon) \text{ (current return on capital)} - \phi(I, K) - \lambda(B, K, \epsilon) \text{ (adjustment costs)} + E\{V(K', \epsilon')\} - V(K, \epsilon) \text{ (capital gain)} \]
Model

• Abel and Eberly (1994) in discrete time with financial frictions:
 \(rV(K, \epsilon) = \max \pi(K, \epsilon) \) (current return on capital)
 - \(\phi(I, K) \) - \(\lambda(B, K, \epsilon) \) (adjustment costs)
 + \(E\{V(K', \epsilon')\} - V(K, \epsilon) \) (capital gain)

• Relating marginal \(q \) to frictions:
 \((r + \delta)V_1(K, \epsilon) = \pi_1(K, \epsilon) - \phi_2(I^*, K) - \lambda_2(I^*, K) \)
 + \(E\{V_1(K^*, \epsilon') - V_1(K, \epsilon)\} \)
Model

- In order to link to avg. q, assume everything is homogeneous degree 1, i.e.,:
 - $\pi(K,\epsilon) = \epsilon K$ (AK technology)
 - $\phi(I,K) = K \phi(I/K,1)$
 - $\lambda(B,K) = K \lambda(B/K,1)$
Model

• In order to link to avg. q, assume everything is homogeneous degree 1, i.e.,:
 – $\pi(K,\varepsilon) = \varepsilon K$ (AK technology)
 – $\phi(I,K) = K\phi(I/K,1)$
 – $\lambda(B,K) = K\lambda(B/K,1)$

• Then:

 $$V(K, \varepsilon) = H(\varepsilon)K$$

 and

 $$q = \frac{V(K, \varepsilon)}{K} = V_1(K, \varepsilon) = H(\varepsilon)$$

 (Average Q=Marginal Q)
Issues

1. Firm size indeterminate (no curvature in K)
 – strange for firm-level analysis
2. Optimality is now independent of K
 \[E\{q'\} = E\{H(\varepsilon' | \varepsilon)\} = \phi_1 + \lambda_1 \]
3. q is exogenous, determined purely by technology shock process, not frictions
 – convergence intuition doesn’t make sense
4. Investment identifies frictions
Graphically

\[\phi_1 \]
Graphically

\[\phi_1, \phi_1 + \lambda_1 \]
Graphically

\[\text{Benefit} = q = H(\varepsilon) \]

\[\phi_1 + \lambda_1 \]

Investment
Graphically
Estimation

- **Model-wise**
 - q' is exogenous,
 - $\phi_1 + \lambda_1$,
Estimation

- **Model-wise**
 - \(q' \) is exogenous,
 - \(\phi_1 + \lambda_1 \),
- But *statistically*:
 \[
 q' - \mathbb{E}\{q'\} = u
 \]
- So regress “exogenous” variable on “endogenous”:
 \[
 q' = \phi_1 + \lambda_1 + u
 \]
Estimation

• Model-wise
 – q' is exogenous,
 – $\phi_1 + \lambda_1$,
• But statistically:
 \[q' - E\{q'\} = u \]
• So regress “exogenous” variable on “endogenous”:
 \[q' = \phi_1 + \lambda_1 + u \]
 – This is the opposite of what people typically do, but it’s clean
 • These reverse regressions are problematic (e.g., Gomes, 2001)
 – But, frictions do not drive q movements
Estimation

- **Model-wise**
 - q' is exogenous,
 - $\phi_1 + \lambda_1$.
- But **statistically**:

 $q' - \mathbb{E}\{q'\} = u$

- So regress “exogenous” variable on “endogenous”:

 $q' = \phi_1 + \lambda_1 + u$

 - This is the opposite of what people typically do, but it’s clean
 - These reverse regressions are problematic (e.g., Gomes, 2001)
 - But, frictions do not drive q movements
- Leaving out many more moment conditions – any current variable is an instrument
Estimation

- **Model-wise**
 - q' is exogenous,
 - $\phi_1 + \lambda_1$,
- But *statistically*:
 \[q' - E\{q'\} = u \]
- So regress “exogenous” variable on “endogenous”:
 \[q' = \phi_1 + \lambda_1 + u \]
 - This is the opposite of what people typically do, but it’s clean
 - These reverse regressions are problematic (e.g., Gomes, 2001)
 - But, frictions do not drive q movements
- Leaving out many more moment conditions – any current variable is an instrument
- Their timing decisions help identify more
Empirics/Results

• Result on shareholders’ rights appear fairly robust
• But possible measurement issues/important outliers
 – Intangible capital important?
 • Mean q is 3.3, 75th percentile just 1.9, std. dev=157.2
 • Why doesn’t capital flow to “poor” firms?
Empirics/Results

- Result on shareholders’ rights appear fairly robust
- But possible measurement issues/important outliers
 - intangible capital important?
 - mean q is 3.3, 75th percentile just 1.9, std. dev=157.2
 - Why doesn’t capital flow to “poor” firms?
 - marginal profit
 - Measurement endogeneity: \((\pi_{t+1} - \pi_t)/(K_{t+1}-K_t)\)
 - Again wide variance: mean=-0.2, std. dev=80.8
Empirics/Results

• Result on shareholders’ rights appear fairly robust
• But possible measurement issues/important outliers
 – intangible capital important?
 • mean q is 3.3, 75th percentile just 1.9, std. dev=157.2
 • Why doesn’t capital flow to “poor” firms?
 – marginal profit
 • Measurement endogeneity: \((\pi_{t+1} - \pi_t)/(K_{t+1} - K_t)\)
 • Again wide variance: mean=-0.2, std. dev=80.8
• Other measurement concerns: treatment of disinvestment, cash
Empirics/Results

• Result on shareholders’ rights appear fairly robust
• But possible measurement issues/important outliers
 – intangible capital important?
 • mean q is 3.3, 75th percentile just 1.9, std. dev=157.2
 • “Why doesn’t capital flow to poor, publicly-traded companies?”
 – marginal profit
 • Measurement endogeneity: \((\pi_{t+1} - \pi_t)/(K_{t+1} - K_t)\)
 • Again wide variance: mean=-0.2, std. dev=80.8
• Other measurement concerns: treatment of disinvestment, cash
• Opaque:
 – Identification depends greatly on timing assumptions
 – lots of triple interactions
 • Alternative? Get \(\phi\) and \(\lambda\) coefficients, country by country. Then plot against institution variables
Summary

• Great question
• Interesting data
• Convergence language is problematic
• Neat estimator
• Striking, robust result on shareholder’s rights
 – Hard to interpret, despite model and OLS