Financial Intermediation and Credit Policy

Mark Gertler and Nobuhiro Kiyotaki
NYU and Princeton
Motivation

Present a canonical framework to think about the current financial crisis and the financial accelerator

Disruption of Financial Intermediation

More about financing constraint of financial intermediaries than non-financial businesses and households

Unconventional Monetary Policy

Liquidity facilities to financial intermediaries

Direct lending to non-financial firms

Equity injections to financial intermediaries
Federal Reserve Assets

Trillions of Dollars

Aug-07 Oct-07 Dec-07 Feb-08 Apr-08 Jun-08 Aug-08 Oct-08 Dec-08 Feb-09 Apr-09

Trillions of Dollars

Repo
Treasury Securities
Other
AMLF
Maiden Lane I, II, III
Other Credit (&AIG ext)
PDCF, Other Broker-dealer
TAF
Primary Credit
Currency Swaps
Agency MBS
Agency Debt
TALF
CPFF

Federal Reserve Liabilities

Reserve Balances
Treasury, ga
Reverse Repo
Other
Currency

Source: H41, Bloomberg
Model

Goods producers dispersed across islands with perfectly mobile labor:

\[Y_t = A_t K_t^\alpha L_t^{1-\alpha}, \quad 0 < \alpha < 1 \]

Investment opportunity arrives to each island with prob \(\pi^i = \pi \) - i.i.d. across island and time:

\[
K_{t+1} = \psi_{t+1}[I_t + \pi(1 - \delta)K_t] + \psi_{t+1}(1 - \pi)(1 - \delta)K_t \\
= \psi_{t+1}[I_t + (1 - \delta)K_t]
\]

Shocks to the quality of capital \(\psi_{t+1} \) and productivity \(A_t \) follow AR(1)

Resource constraint

\[
Y_t = C_t + \left[1 + f \left(\frac{I_t}{I_{t-1}} \right) \right] I_t + G_t
\]
Each household consists of many members, $1 - f$ workers, f bankers

Workers supply labor and bring wages back to the household

Each banker manages a bank, retains some earning and brings back the rest to the household

Perfect consumption insurance within the household

Each period, bankers exit to become workers and bring back the retained earning with prob $1 - \sigma$

$(1 - \sigma)f$ workers become bankers with ξ fraction of total asset of the household as the start-up fund
The household chooses \((C_t, L_t, D_t)\) to maximize

\[
E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[\ln(C_\tau - \gamma C_{\tau-1}) - \frac{\chi}{1 + \varepsilon} L_\tau^{1+\varepsilon} \right]
\]

subject to \(C_t = W_t L_t + \Pi_t - T_t + R_t D_{t-1} - D_t\)

\(D_t\) is short-term debt (bank deposit and government debt)

\(\Pi_t\) is net transfer to the household from firms and banks
The goods producer hires workers to produce → profit per unit of capital:

\[Z_t = \frac{Y_t - W_t L_t}{K_t} = \alpha A_t \left(\frac{L_t}{K_t} \right)^{1-\alpha} \]

Goods producer sells security (equity) to banks of the same island in order to finance new investment. Each security pays dividend:

\[\psi_{t+1} Z_{t+1}, \ (1-\delta) \psi_{t+1} \psi_{t+2} Z_{t+2}, \ (1-\delta)^2 \psi_{t+1} \psi_{t+2} \psi_{t+3} Z_{t+3}, \ldots \]

Capital goods producer chooses investment goods supply in order to maximize the profit
Before the arrival of investment opportunity, each bank chooses an island to operate and raises funds from households by offering non-contingent deposit contract d_t

After the arrival of the investment opportunity, the bank borrows (or lends) b^h_t in the interbank market in order to purchase the security of the goods producers of the same island:

$$Q^h_t s^h_t = n^h_t + b^h_t + d_t, \text{ where } h = i, n$$

The net worth of the bank is

$$n^h_t = \left[Z_t + (1 - \delta)Q^h_t \right] \psi_t s_{t-1} - R_{bt} b_{t-1} - R_t d_{t-1}$$
Beginning of the period

Households Retail financial market Deposit Banks
During the period

Bank with fund shortage

New and old loans

Firms with new investment opportunity

Interbank market

Investing regions

Banks with surplus fund

Old loans

Firms without new investment opportunities

Non-investing regions
The value of the bank at the end of period t is

$$V_t = V \left(s_t^h, b_t^h, d_t \right) = E_t \sum_{\tau=t+1}^{\infty} (1 - \sigma)\sigma^{\tau-t} \Lambda_{t,\tau} n_{\tau}^h$$

After the bank obtains funds, the banker may steal a fraction θ of "divertable" funds - total assets minus ω fraction of interbank borrowing. The incentive constraint for the bank not to divert the asset is

$$V \left(s_t^h, b_t^h, d_t \right) \geq \theta \left(Q_t^h s_t^h - \omega b_t^h \right)$$

Case of $\omega = 1$ is no friction of interbank market. Case of $\omega = 0$ is symmetric moral hazard between retail and interbank financial markets.
Bellman equation

\[V (s_t, b_t, d_t) = \nu_{st}s_t - \nu_{bt}b_t - \nu_t d_t \]

\[= E_t \Lambda_{t,t+1} \sum_{h=i,n} \pi^h \left\{ \left(1 - \sigma \right)n_{t+1}^h \right. \]

\[+ \sigma \max_{d_{t+1}} \left[\max_{s_{t+1}, b_{t+1}} V (s_{t+1}, b_{t+1}, d_{t+1}) \right] \right\} \]

The optimization of bank implies

\[\nu_t = E_t \left[\Lambda_{t,t+1} R_{t+1} (\pi^i \Omega_{t+1}^i + \pi^n \Omega_{t+1}^n) \right] \]

\[\mu_t^h = E_t \left[\Lambda_{t,t+1} (\pi^i R_{kt+1}^h \Omega_{t+1}^i + \pi^n R_{kt+1}^h \Omega_{t+1}^n) \right] - \nu_t \]

\[\phi_t^h = \frac{\nu_t}{\theta - \mu_t^h} \]

\[\Omega_{t+1}^{h'} = 1 - \sigma + \sigma (\nu_{t+1} + \mu_{t+1}^{h'} \phi_{t+1}^{h'}) \]

\[R_{kt+1}^{hh'} = \psi_{t+1} \frac{Z_{t+1} + (1 - \delta) Q_{t+1}^{h'}}{Q_t^h} \]
The security market equilibrium implies

\[I_t + \pi^i (1 - \delta) K_t = S_t^i = S_{pt}^i + S_{gt}^i \]
\[Q_t^i S_{pt}^i - \omega B_t = \phi_t^i N_t^i \]
\[\pi^n (1 - \delta) K_t = S_t^n = S_{pt}^n + S_{gt}^n \]
\[Q_t^n S_{pt}^n + \omega B_t \leq \phi_t^n N_t^n \]

The aggregate net worth of banks in islands of type \(h \) is

\[N_t^h = \pi^h \left\{ (\sigma + \xi)[Z_t + (1 - \delta) Q_t^h] \psi_t \left(S_{pt-1}^i + S_{pt-1}^n \right) - \sigma R_t D_{t-1} \right\} \]

The aggregate deposit \(D_t \) is

\[Q_t^i S_{pt}^i + Q_t^n S_{pt}^n = N_t^i + N_t^n + D_t \]
Credit Policies

Direct Lending: Central bank purchases a fraction φ^h_t of securities of goods producers of type h islands with the administrative cost of τ per unit

$$S^h_{gt} = \varphi^h_t S^h_t, \text{ where } \varphi^h_t = v_g \left[E_t \left(R_{kt+1}^{hh'} \right) - R_{t+1} - (R^h_k - R) \right]$$

→ The lending in investing islands expands

Discount Window Lending: Central bank lends to bank in the interbank market at interest rate R_{mt+1}

$$Q^h_t s^h_t = n^h_t + b^h_t + m^h_t + d_t$$

$$V(s^h_t, b^h_t, m^h_t, d_t) \geq \theta \left(Q^h_t s^h_t - \omega b^h_t - \omega_m m^h_t \right)$$

→ To the extent that the central bank is better in preventing the diversion of asset $\omega_m > \omega$, the central bank has to charge
a rate $R_{mt+1} > R_{bt+1}$ in order to keep the interbank market active

$$Q_t^i S_t^i = \phi_t^i N_t^i + \omega B_t + \omega_m M_t.$$

Equity injection: Fiscal authority coordinate with the central bank to acquire ownership position in banks

\rightarrow The effects \cong gift to banks + direct lending (Formal analysis is in paper)

Government budget constraint:

$$\tau \sum_{h=i,n} S_{gt}^h + \sum_{h=i,n} Q_t^h \left[S_{gt}^h - (1 - \delta) \psi_t \pi^h S_{gt-1} \right]$$

$$= T_t + Z_t \psi_t S_{gt-1} + R_{mt} M_{t-1} - M_t + D_{gt} - R_t D_{gt-1}$$
Figure 1. Crisis Experiment: Perfect Interbank Market
Figure 2. Crisis Experiment: Imperfect Interbank Market

Imperfect Interbank Market ($\pi_i = 0.25$)

RBC

Perfect Interbank Market
Figure 3. Lending Facilities: Perfect Interbank Market

\[\psi \quad r \quad E(r_k) - r \]

\[y \quad c \quad \text{investment} \]

\[k \quad \text{labor} \]

\[\text{net worth} \quad \text{fraction of government assets} \]

- blue: \(v_g = 0 \)
- green: RBC
- red: \(v_g = 100 \)
Figure 4. Lending Facilities: Imperfect Interbank Market
Issues for Further Study

Tightening margins

Outside equity issue of banks

Capital requirement and the other regulations

Moral hazard from anticipated policy interventions